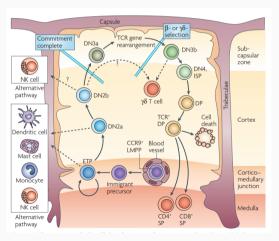
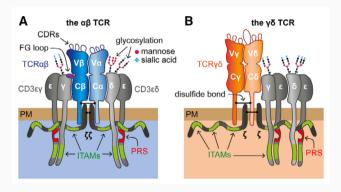
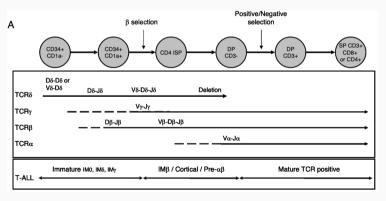
TREC mediated oncogenesis in human immature T lymphoid malignancies preferentially involves *ZFP*36L2 — Molecular Cancer

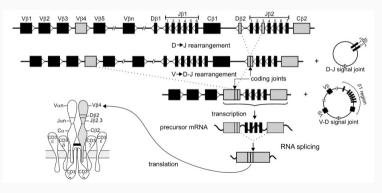

Dr. Thomas Steimlé June 29, 2023


Background — Thymopoiesis

 During thymopoiesis (HSC ⇒ T-cell), the phenotypic diversity of the antigen receptor (TCR) is acquired.


Background — Thymopoiesis

 During thymopoiesis (HSC ⇒ T-cell), the phenotypic diversity of the antigen receptor (TCR) is acquired.


Background — V(D)J recombination

• This process involves a series of genome recombination of the different TCR loci followed by proliferation and selection of functionnal non self-reacting TCR.

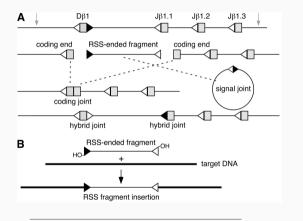
Background — V(D)J recombination

• This process involves a series of genome recombination of the different TCR loci followed by proliferation and selection of functionnal non self-reacting TCR.

Background — V(D)J recombination

- V(D)J recombination is a threat to genomic stability, prone to induce DSB occurring in genes outside of the TCR loci, followed by erroneous repair resultating in SV.
- This oncogenetic process is responsible of well known genetic alterations in T-ALL (particulary translocations accountable of ectopic expression of oncogenes TLX1, TAL1 etc...)¹.

Table 1 TCR-oncodene translocation occurrence in T-ALL


		Chromosome band	Chromosomal Aberrations*	Occurrence in T-ALL
Basic helix-koop- helix transcription factors (bHLH)	TALI	1p32	t(1;14)(p32;q11)/ t(1;7)(p32;q34)	4%
	TAL2	9q34	t(7;9)(q34;q34)	~296
	LYLI	19p13	t(7;19)(q34;p13)	7%
	OLIG2	21q22	t(14;21)(q11;q22)	2%
	MYC	8q24	t(8;14)(q24;q11)	~ 1%
Lim only domain (LMO) proteins	LMO2	11p13	t(11;14)(p13;q11)/ t(7;11)(q34;p15)	~6%
	LMO1	11p15	t(11;14)(p15;q11)/ t(7;11)(q34;p13)	~296
	LMO3	12p12	t(7;12)(q34;p12)	<1
Homeobox proteins	TLX1	10q24	t(10;14)(q24;q11)/ t(7;10)(q34;q24)	5-10%C, ~30%
	TLX3	5q35	t(5;14)(q35;q11)	20-25%C,~5%
	HOXA cluster	7p15	t(7;14) (p15;q11)/ inv(7) (p15;q34)	-3%
	NKX2-1	14q13	t(7;14)(q34;q13)/ inv(14)(q13;q32)	< 196
	NKX2-4	20p11	t(20:14)(p11:q11)	<1%
	NKX2-5	5q35	t(5;14)(q35;q32)	< 1%
Other	NOTCHI	9q32	t(7;9)(q34;q34)	<1%
	CCND2	12p13	t(7;12)(q34;p13)/ t(12;14)(p13;q11)	<1%
	MYB	6q23	t(6;7)(q23;q34)	~3%
	LCK	1p34	t(1;7)(p34;q34)	<1%
	BCL11B	14g32	inv(14)(g11;g32)	<1%
	TCLIA	14q32	t(7;14)(q34;q32)/ inv(14)(q11;q32)	<1%
	BMII	10p12	t(7;10)(q34;p12)	<1%

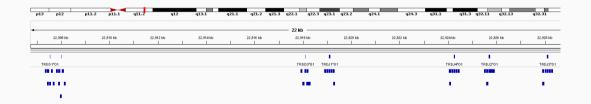
^{*}Chr.L4q11: TCRD locus, Chr.7q34: TCRB locus, **Larmonie et al., unpublished data, 2013: *Childhood, *Adulthood

Larmonie, Nicole S D et al. "Breakpoint sites disclose the role of the V(D)J
recombination machinery in the formation of T-cell receptor (TCR) and non-TCR
associated aberrations in T-cell acute lymphoblastic leukemia." Haematologica vol. 98,8
(2013): 1173-84.

Background — T-cell receptor excision circles (TRECs)

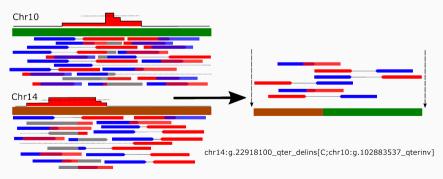
- During recombination deleted parts of the loci are circulized into TRECs.
- Similar to transposons, the reintegration of TRECs has been implicated in the deregulation or inactivation of targeted genes.

Ocurry, John D et al. "Chromosomal reinsertion of broken RSS ends during T cell development." The Journal of experimental medicine vol. 204,10 (2007): 2293-303. doi:10.1084/jem.20070583


- In T-ALL, we could find with molecular biology tools insertions of those TRECs.
- With the same tools we could also find all the translocations which involves the TCR.

► Material & Method

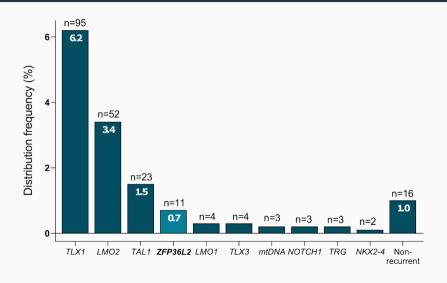
• We used our extensed collection of T-ALL samples at diagnostic n = 1533.


▲ Material & Method

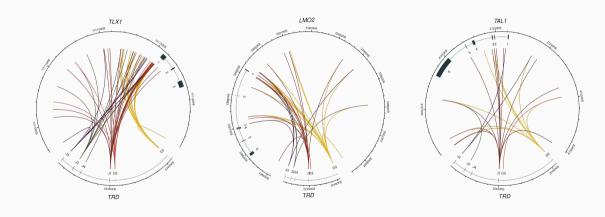
- We used our extensed collection of T-ALL samples at diagnostic n = 1533.
- We designed a NGS capture assay with capture probes mapped at multiple parts of de TCR δ locus.

► Material & Method

- We used our extensed collection of T-ALL samples at diagnostic n = 1533.
- We designed a NGS capture assay with capture probes mapped at multiple parts of de TCR δ locus.
- We developed a specific software to analysed aligned reads and call SV https://github.com/Dr-TSteimle/sv-finder.

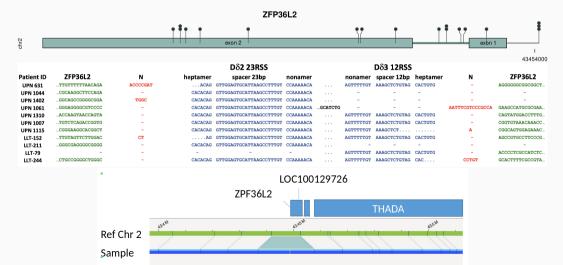

Results — TRD translocations — Validation cohort

- To validate our method, we used a previously published cohort of 264 cases analysed with TRD dual-color FISH probe¹.
- Se = 98.1% [95% CI 96-99] and Sp = 97.7%
- The 4 FN cases are in fact TRECs insertions inside ZFP36L2 that couldn't have been seen with FISH!


	FISH		
	Positive	Negative	
Positive	43	4	
Negative	1	216	
		Positive 43	

¹Le Noir, Sandrine et al. "Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL." Blood vol. 120,16 (2012): 3298-309. doi:10.1182/blood-2012-04-425488

Results — TRD translocations — Discovery cohort



Results — TRD translocations — Discovery cohort

Results — TRD translocations — Discovery cohort

We confirmed all TRECs insertions with sanger sequencing and OGM.

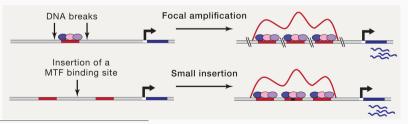
Conclusions

- We developed a highly accurate and sensitive method that enables precise characterization of *TRD* structural variations. This method can be applied at diagnosis without incurring any additional costs.
- Our findings provide confirmation that recurrent TRECs insertions are present in cases of T-ALL.
- Using our method, we have observed that these recurrent TRECs insertions predominantly disrupt the ZFP36L2 gene.
- The tumor suppressor ZFP36L2 is well-established to be involved in V(D)J
 recombination, but further clarifications are needed regarding its specific role in
 oncogenesis. Our findings will help in the characterization of this tumor suppressor.

🤪 My PhD — Epigenetic Rationnal

• The aforementioned results contribute to the understanding of the dysregulation of proto-oncogenes such as TAL1, TLX1 or TLX3.

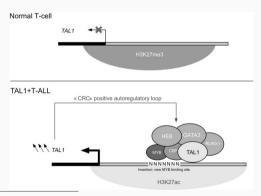
¹Bradner JE, et al. Cancer. Cell. 2017 Feb 9;168(4):629-643


🤪 My PhD — Epigenetic Rationnal

- The aforementioned results contribute to the understanding of the dysregulation of proto-oncogenes such as TAL1, TLX1 or TLX3.
- Despite extensive investigation, the molecular mechanisms underlying the dysregulation of these oncogenes, remain elusive in many cases.

¹Bradner JE, et al. Cancer. Cell. 2017 Feb 9;168(4):629-643

🤔 My PhD — Epigenetic Rationnal


- The aforementioned results contribute to the understanding of the dysregulation of proto-oncogenes such as TAL1, TLX1 or TLX3.
- Despite extensive investigation, the molecular mechanisms underlying the dysregulation of these oncogenes, remain elusive in many cases.
- It has been demonstrated that tumor cells acquire enhancers¹ through intergenic sequence mutations that enable binding of transcription factors.

¹Bradner JE, et al. Cancer. Cell. 2017 Feb 9;168(4):629-643

🤪 My PhD — Epigenetic Rationnal

- The presence of upstream indels in TAL1 leads to the formation of a neo-enhancer¹.
- It has also been shown that the transcription factor MYB can bind to this neo-enhancers².

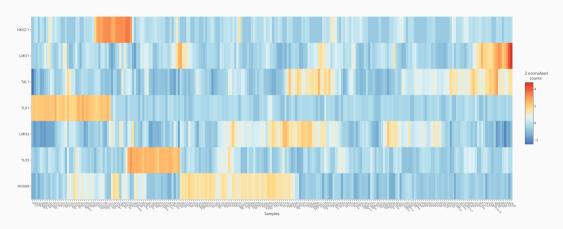
Navarro JM et al. Nat Commun. 2015;6:6094

² Smith, C et al. "TAL1 activation in T-cell acute lymphoblastic leukemia: a novel oncogenic 3' neo-enhancer." Haematologica vol. 108,5 1259-1271. 1 May. 2023

A By taking a pan-genomic approach, it is possible to identify numerous intergenic alterations correlated with the cis deregulation of adjacent genes (correlation between transcriptome RNA-seq and ChIP-seq).

- A By taking a pan-genomic approach, it is possible to identify numerous intergenic alterations correlated with the cis deregulation of adjacent genes (correlation between transcriptome RNA-seq and ChIP-seq).
- B Some of these genes are expected to be known oncogenes, while others have the potential to be novel oncogenes (discovery).

- A By taking a pan-genomic approach, it is possible to identify numerous intergenic alterations correlated with the cis deregulation of adjacent genes (correlation between transcriptome RNA-seq and ChIP-seq).
- B Some of these genes are expected to be known oncogenes, while others have the potential to be novel oncogenes (discovery).
- C It is likely that these specific alterations are the causative factors for the cis deregulation of adjacent genes (functional experiments).


- A By taking a pan-genomic approach, it is possible to identify numerous intergenic alterations correlated with the cis deregulation of adjacent genes (correlation between transcriptome RNA-seq and ChIP-seq).
- B Some of these genes are expected to be known oncogenes, while others have the potential to be novel oncogenes (discovery).
- C It is likely that these specific alterations are the causative factors for the cis deregulation of adjacent genes (functional experiments).
- D Based on these alterations, it is possible to stratify patients into groups with similar prognoses.

- A By taking a pan-genomic approach, it is possible to identify numerous intergenic alterations correlated with the cis deregulation of adjacent genes (correlation between transcriptome RNA-seq and ChIP-seq).
- B Some of these genes are expected to be known oncogenes, while others have the potential to be novel oncogenes (discovery).
- C It is likely that these specific alterations are the causative factors for the cis deregulation of adjacent genes (functional experiments).
- D Based on these alterations, it is possible to stratify patients into groups with similar prognoses.
- E The characterization of the deregulation mechanisms and the discovered oncogenes should help identify vulnerabilities that can be targeted by treatment.

- A By taking a pan-genomic approach, it is possible to identify numerous intergenic alterations correlated with the cis deregulation of adjacent genes (correlation between transcriptome RNA-seq and ChIP-seq).
- B Some of these genes are expected to be known oncogenes, while others have the potential to be novel oncogenes (discovery).
- C It is likely that these specific alterations are the causative factors for the cis deregulation of adjacent genes (functional experiments).
- D Based on these alterations, it is possible to stratify patients into groups with similar prognoses.
- E The characterization of the deregulation mechanisms and the discovered oncogenes should help identify vulnerabilities that can be targeted by treatment.
- F This treatment may prove to be more effective with fewer side effects compared to the currently prescribed polychemotherapy.

▽ What's already done

☑ Alignement and copy number analysis of more than 260 RNA-seq

▼ What's already done

- Alignement and copy number analysis of more than 260 RNA-seq
- ☑ Alignement and copy number analysis of 72 ChIP-seq (H3K4me4 and H4K27ac).

▼ What's already done

- Alignement and copy number analysis of more than 260 RNA-seq
- ☑ Alignement and copy number analysis of 72 ChIP-seq (H3K4me4 and H4K27ac).
- We have developed a high-performance tool that optimizes memory usage and speed for correlating variably expressed genes with depth of ChIP-seq peaks. Specifically, our tool efficiently handles a large dataset consisting of 10,036 gene expressions and 84,839 ChIP-seq positions, resulting in a total of 851,444,204 correlations.

▼ What's already done

- Alignement and copy number analysis of more than 260 RNA-seq
- ☑ Alignement and copy number analysis of 72 ChIP-seq (H3K4me4 and H4K27ac).
- We have developed a high-performance tool that optimizes memory usage and speed for correlating variably expressed genes with depth of ChIP-seq peaks. Specifically, our tool efficiently handles a large dataset consisting of 10,036 gene expressions and 84,839 ChIP-seq positions, resulting in a total of 851,444,204 correlations.
- Calling of genetic alterations sequenced by ChIP-seq.

of First results

With these filters:

- Recurrent mutations in the same ChIP-seq peak (> 1 case) with enrichment of the alternative allele (AF > 0.6).
- Cases with the mutations should have correlated genes (Pearson coefficient > 0.7) significantly upregulated (t-test p value < 0.05)

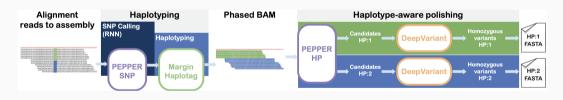
8 Caveats

• Most of intergenic alterations are SNPs.

8 Caveats

- Most of intergenic alterations are SNPs.
- Complexe alterations like indels and SV are difficult to call with ChIP-seq small reads.

8 Caveats


- Most of intergenic alterations are SNPs.
- Complexe alterations like indels and SV are difficult to call with ChIP-seq small reads.
- → We are implementing longreads sequencing with the Oxford Nanopore Promethion for resolving complex genomic regions, detecting structural variations, and studying repetitive elements.

• We will conduct a whole-genome sequencing of 150 T-ALL cases along with their corresponding constitutional samples.

¹ Kolmogorov, Mikhail et al. "Assembly of long, error-prone reads using repeat graphs." Nature biotechnology vol. 37,5 (2019): 540-546. doi:10.1038/s41587-019-0072-8

- We will conduct a whole-genome sequencing of 150 T-ALL cases along with their corresponding constitutional samples.
- Our objective is to implement a pipeline capable of assembling long reads and generating a diploid reference genome for each of the cases.

¹ Kolmogorov, Mikhail et al. "Assembly of long, error-prone reads using repeat graphs." Nature biotechnology vol. 37,5 (2019): 540-546. doi:10.1038/s41587-019-0072-8

- We will conduct a whole-genome sequencing of 150 T-ALL cases along with their corresponding constitutional samples.
- Our objective is to implement a pipeline capable of assembling long reads and generating a diploid reference genome for each of the cases.
- The alignment of somatic reads on it and the subsequent calling of somatic variants, especially structural variations (SV), will be of significant interest.

- We will conduct a whole-genome sequencing of 150 T-ALL cases along with their corresponding constitutional samples.
- Our objective is to implement a pipeline capable of assembling long reads and generating a diploid reference genome for each of the cases.
- The alignment of somatic reads on it and the subsequent calling of somatic variants, especially structural variations (SV), will be of significant interest.
- By aligning our current RNA-seq and ChIP-seq data using this approach, we will be able to phase gene expression and identify allele-enriched epigenetic marks more efficiently.

- We will conduct a whole-genome sequencing of 150 T-ALL cases along with their corresponding constitutional samples.
- Our objective is to implement a pipeline capable of assembling long reads and generating a diploid reference genome for each of the cases.
- The alignment of somatic reads on it and the subsequent calling of somatic variants, especially structural variations (SV), will be of significant interest.
- By aligning our current RNA-seq and ChIP-seq data using this approach, we will be able to phase gene expression and identify allele-enriched epigenetic marks more efficiently.
- We will also have access to phased methylation of CpG islands with the same technic.

Thank you for listening! Questions?

