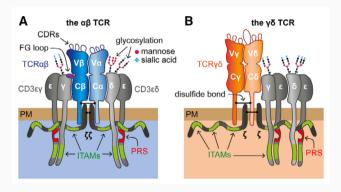
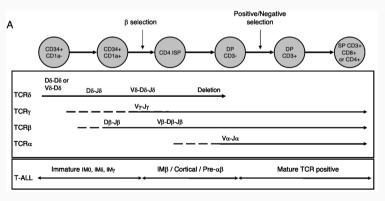
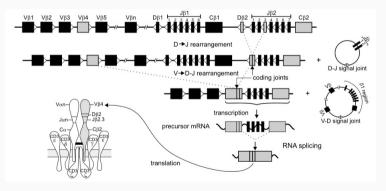

Dr. Thomas Steimlé June 29, 2023


Background — Thymopoiesis

 \bullet During thymopoiesis (HSC \Rightarrow T-cell), the phenotypic diversity of the antigen receptor (TCR) is acquired.


Background — Thymopoiesis

 During thymopoiesis (HSC ⇒ T-cell), the phenotypic diversity of the antigen receptor (TCR) is acquired.


Background — V(D)J recombination

• This process involves a series of genome recombination of the different TCR loci followed by proliferation selection of functionnal non self-reacting receptors.

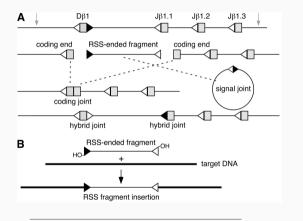
Background — V(D)J recombination

• This process involves a series of genome recombination of the different TCR loci followed by proliferation selection of functionnal non self-reacting receptors.

₹ Background — V(D)J recombination

- V(D)I recombination is a threat to genomic stability, prone to induce DSB occurring in genes outside of the TCR loci, followed by erroneous repair resultating in SV.
- This oncogenesis process is responsible of well known genetic alterations in T-ALL (particulary translocations accountable of ectopic expression of oncogenes TLX1. TAL1 etc...)1.

TOD ----- to---to---ti-- ------ in T Al


(1MO) proteins LMO1	Protein family	Gene	Chromosome band	Chromosomal Aberrations*	Occurrence in T-ALL
DZL		TALI	1p32		4%
Direct D	,	TAL2	9q34	t(7;9)(q34;q34)	~296
MPC 8q21 1(814) (q24q11) -1% -1% (MO) proteins LMO2 11p13 (1114) (p18q11) -8% (LMO) proteins LMO2 11p15 (1114) (p18q13) -2% (1211) (q8q13) -2% -2% (1211) (q8q13) -2% -2% (1211) (q8q13) -2% -2% (1211) (q8q13) -2%		LYLI	19p13	t(7;19)(q34;p13)	7%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			21q22	t(14;21)(q11;q22)	2%
(IMO) proteins (IMO) proteins (IMO) 1p15 (1114) (158q11) -296 (IMO) 12p12 (1715) (264p13) -296 (IMO) 12p12		MYC	8q24	t(8;14)(q24;q11)	~ 1%
Monocloox 1(711) (\(\)\(\)\(\)\(\)\(\)\(\)\(\)		LMO2	11p13		~6%
Homendox	,	LMO1			~296
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		LMO3	12p12	t(7;12)(q34;p12)	<1
HDX4 cluster TpL5 1(7344) (pL5x11) -2% MXC2 /	Homeobox proteins	TLX1	10q24		5-10%C, ~30%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TLX3	5q35	t(5;14)(q35;q11)	20-25%C,~5%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		HOXA cluster	7p15		-3%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NKX2-1	14q13		< 196
Other $NOTCHI$ 9632 $(77.9)(634634)$ $< 1\%$ $CCN52$ 12913 $(17.12)(636913)$ $< 1\%$ MTB 6023 $(127.0(25264))$ $< 3\%$ LCK 1954 $(17.7)(625264)$ $< 2\%$ $BCLIB$ 14632 $(int)(4)(613623)$ $< 1\%$ $TCLM$ 14632 $(int)(4)(645623)$ $< 1\%$		NKX2-4	20p11	t(20:14)(p11:q11)	< 196
$ \begin{array}{c cccc} CCN22 & 12p 13 & 1(72)2(p3p4p)35/ & < 1 Vp \\ M78 & 1(124)(p18)3(1) & 1(124)(p18)3(1) \\ M78 & 6q23 & 1(67)(q20p3)4 & < 3 Vp \\ LCX & 1p34 & 1(f)2(p3p4p)4 & < 1 Vp \\ BCL118 & 14q32 & inv(14)(q11p32) & < 1 Vp \\ TZLM & 14q32 & 1(74)(q3p4p32) & < 1 Vp \\ \end{array} $		NKX2-5	5q35	t(5;14)(q35;q32)	< 1%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Other				
			12p13		<1%
BCLIIB 14q32 inv(14)(q11;q32) <1% TCLIA 14q32 t(7;14)(q34;q32)/ <1%		MYB	6q23	t(6;7)(q23;q34)	~3%
TCLIA 14q32 t(7;14)(q34;q32)/ <1%			1p34	t(1;7)(p34;q34)	
TCLIA 14q32 t(7;14)(q34;q32)/ <1%		BCL11B	14q32	inv(14)(q11;q32)	<1%
inv(14)(q11:q32)		TCLIA			<1%
BMII 10p12 t(7;10)(q34;p12) <1%		BMII	10p12		<1%

^{*}Chr L4g LL TCRD focus: Chr 7g34: TCRB focus: **Larmonie et al., unouhlished data: 2013: *Childhood: *Adulthoo

^{1.} Larmonie, Nicole S D et al. "Breakpoint sites disclose the role of the V(D)I recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia." Haematologica vol. 98.8 (2013): 1173-84

Background — T-cell receptor excision circles (TRECs)

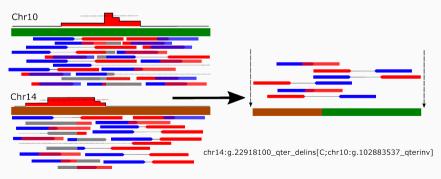
- During recombination deleted parts of the loci are circulized into TRECs.
- Like tansposons the reintegration of TRECs as been suspect to cause deregulation of targeted genes.

Ocurry, John D et al. "Chromosomal reinsertion of broken RSS ends during T cell development." The Journal of experimental medicine vol. 204,10 (2007): 2293-303. doi:10.1084/jem.20070583

Hypothesis

- In T-ALL, we could find with molecular biolgy tools insertions of those TRECs.
- With the same tools we also could also find all the translocations which involves the TCR.

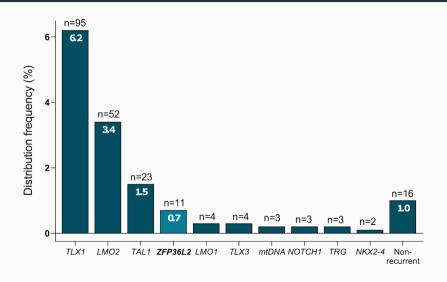
• We used our extensed collection of T-ALL samples at diagnostic n = 1533.


🚹 Material & Method

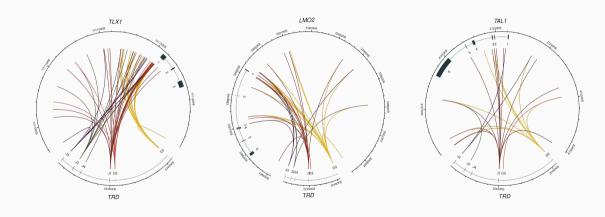
- We used our extensed collection of T-ALL samples at diagnostic n = 1533.
- We designed a NGS capture assay with capture probes mapped at multiple parts of de TCR δ locus.

🚹 Material & Method

- We used our extensed collection of T-ALL samples at diagnostic n = 1533.
- We designed a NGS capture assay with capture probes mapped at multiple parts of de TCR δ locus.
- We developed a specific software to analysed aligned reads and call SV https://github.com/Dr-TSteimle/sv-finder.

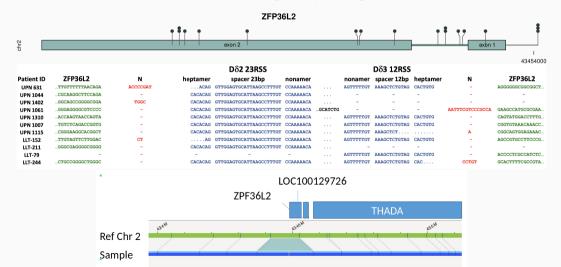


- To validate our method, we used a previously published cohort of 264 cases analysed with TRD dual-color FISH probe¹.
- Se = 98.1% [95% CI 96-99] and Sp = 97.7%
- The 4 FN cases are in fact TRECs insertions inside ZFP36L2 that couldn't have been seen with FISH!


	FISH		
	Positive	Negative	
Positive	43	4	
Negative	1	216	
		Positive 43	

¹ Le Noir, Sandrine et al. "Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL," Blood vol. 120.16 (2012): 3298-309. doi:10.1182/blood-2012-04-425488

Results — TRD translocations — Discovery cohort



Results — TRD translocations — Discovery cohort

We confirmed all TRECs insertions with sanger sequencing and OGM.

Conclusions

- We developed a highly accurate and sensitive method that enables precise characterization of *TRD* structural variations. This method can be applied at diagnosis without incurring any additional costs.
- Our findings provide confirmation that recurrent TRECs insertions are present in cases of T-ALL.
- Using our method, we have observed that these recurrent TRECs insertions predominantly disrupt the ZFP36L2 genes.
- The tumor suppressor ZFP36L2 is well-established to be involved in V(D)J
 recombination, but further clarifications are needed regarding its specific role in
 oncogenesis. Our findings will help in the characterization of this tumor suppressor.

್ My PhD — Rationnal

- The aforementioned results contribute to the understanding of the dysregulation of proto-oncogenes such as TAL1, TLX1 or TLX3.
- Despite extensive investigation, the molecular mechanisms underlying the dysregulation of these oncogenes, remain elusive in many cases.

•

💇 Troisième année de thèse – Hypothèses E et F

- Selon les oncogènes identifiés lors des étapes précédentes nous explorerons les possibles interventions thérapeutiques
- Possibilité de test phramacologiques ex vivo et in vivo.

Questions?

