\documentclass[t, aspectratio=169, 10pt]{beamer} \usepackage{makecell} \usepackage{etoolbox} \usepackage{biblatex} \usepackage{tikz} % for graph \usepackage{bbding} \usepackage{layouts} \usepackage{layout} \usepackage{hyperref} % hyper text \usepackage{booktabs} % To thicken table lines \usepackage[normalem]{ulem} % for striking words \usepackage{multicol} \usepackage{tikzscale} % \usepackage[french]{babel} % for date format \newcommand{\SubItem}[1]{ {\setlength\itemindent{15pt} \item[-] #1} } \newcommand\Wider[2][3em]{% \makebox[\linewidth][c]{% \begin{minipage}{\dimexpr\textwidth+#1\relax} \raggedright#2 \end{minipage}% }% } %margins \newenvironment{changemargin}[2]{% \begin{list}{}{% \setlength{\topsep}{0pt}% \setlength{\leftmargin}{#1}% \setlength{\rightmargin}{#2}% \setlength{\listparindent}{\parindent}% \setlength{\itemindent}{\parindent}% \setlength{\parsep}{\parskip}% }% \item[]}{\end{list}} % code formating \usepackage{xcolor} \usepackage{listings} \lstset{basicstyle=\ttfamily, showstringspaces=false, commentstyle=\color{red}, keywordstyle=\color{blue} } \definecolor{codegreen}{rgb}{0,0.6,0} \definecolor{codegray}{rgb}{0.5,0.5,0.5} \definecolor{codepurple}{rgb}{0.58,0,0.82} \definecolor{backcolour}{rgb}{0.95,0.95,0.92} \definecolor{bgturq}{RGB}{35,55,59} \lstdefinestyle{mystyle}{ backgroundcolor=\color{backcolour}, commentstyle=\color{codegreen}, keywordstyle=\color{magenta}, numberstyle=\tiny\color{codegray}, stringstyle=\color{codepurple}, basicstyle=\ttfamily\footnotesize, breakatwhitespace=false, breaklines=true, captionpos=b, keepspaces=true, numbers=left, numbersep=5pt, showspaces=false, showstringspaces=false, showtabs=false, tabsize=2 } % ADD '-pdflua' as argument of latexmk % Ref https://mirror.ibcp.fr/pub/CTAN/macros/luatex/latex/emoji/emoji-doc.pdf \usepackage{emoji} % For linux :https://github.com/samuelngs/apple-emoji-linux \setemojifont{Apple Color Emoji} \usepackage[sfdefault]{FiraSans} \usetheme{metropolis} % Use metropolis theme \usetikzlibrary{positioning,shapes,arrows,calc,fit,backgrounds,shapes.multipart} \tikzset{box/.style={draw, rectangle, rounded corners, thick, node distance=7em, text width=6em, text centered, minimum height=3.5em}} \tikzset{line/.style={draw, thick, -latex'}} \tikzset{every node/.style={font=\scriptsize}} %Graphics and Videos % https://tex.stackexchange.com/questions/89088/how-to-embed-video-and-animation-in-latex-and-latex-beamer-step-by-step \usepackage{graphicx} %The mode "LaTeX => PDF" allows the following formats: .jpg .png .pdf .mps \usepackage{animate} %\usepackage[utf8]{inputenc} %\usetheme{Antibes} \usefonttheme{professionalfonts} \setbeamertemplate{itemize items}[circle] %\bibliography{presentation} \newcommand\blfootnote[1]{ \begingroup \renewcommand\thefootnote{}\footnote{{\tiny #1}}% \addtocounter{footnote}{-1} \endgroup } \newcommand\extrafootertext[1]{% \bgroup \renewcommand\thefootnote{\fnsymbol{footnote}}% \renewcommand\thempfootnote{\fnsymbol{mpfootnote}}% \footnotetext[0]{#1}% \egroup } %Page de titre: \title[]{\emoji{dna} TREC mediated oncogenesis in human immature T lymphoid malignancies preferentially involves \textit{ZFP36L2} --- Molecular Cancer} \author{Dr. Thomas Steimlé} \institute[AMU-TAGC]{ \vfill \begin{figure}[!b] \vspace{2cm} \centering \includegraphics[height=1.5cm]{Images/amu.png} \hspace*{5cm} \includegraphics[height=1.5cm]{Images/logo_tagc.png} \end{figure} } \date{\today} %\titlegraphic{\hfill\includegraphics[height=1.5cm]{Images/1200aphp.svg.png}} %\logo{\includegraphics[width=3cm]{Images/1200aphp.svg.png}} \begin{document} \begin{frame} \maketitle \thispagestyle{empty} \end{frame} \begin{frame}{\emoji{drop-of-blood} Background --- Thymopoiesis} \begin{itemize} \item<1-> During thymopoiesis (HSC $\Rightarrow$ T-cell), the phenotypic diversity of the antigen receptor (TCR) is acquired. \end{itemize} \centering \includegraphics<1>[width=.5\textwidth]{Images/dev_thym.png} \includegraphics<2>[width=.6\textwidth]{Images/Tcr_str.png} \end{frame} \begin{frame}{\emoji{drop-of-blood} Background --- V(D)J recombination} \begin{itemize} \item<1-> This process involves a series of genome recombination of the different TCR loci followed by \alert{proliferation and selection of functionnal non self-reacting TCR}. \end{itemize} \centering \includegraphics<1>[width=.7\textwidth]{Images/MaturLt.png} \includegraphics<2>[width=.7\textwidth]{Images/TCRBschema.jpg} \end{frame} \begin{frame}{\emoji{dna} Background --- V(D)J recombination} \begin{columns} \begin{column}{.5\textwidth} \begin{itemize} \item V(D)J recombination is a \alert{threat to genomic stability}, prone to induce \alert{DSB occurring in genes outside of the TCR loci}, followed by erroneous repair resultating in SV. \item This oncogenetic process is responsible of well known genetic alterations in T-ALL (particulary translocations accountable of ectopic expression of oncogenes \textit{TLX1}, \textit{TAL1} etc\dots)$^1$. \footnotetext{ \tiny 1. Larmonie, Nicole S D et al. “Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia.” Haematologica vol. 98,8 (2013): 1173-84 } \end{itemize} \end{column} \begin{column}{.6\textwidth} \begin{figure} \centering \includegraphics[width=.8\textwidth]{Images/transloc_oncogenes.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{\emoji{dna} Background --- T-cell receptor excision circles (TRECs) } \begin{columns} \begin{column}{.5\textwidth} \begin{figure} \includegraphics[width=\textwidth]{Images/trec.png} \end{figure} \end{column} \begin{column}{.5\textwidth} \begin{itemize} \item During recombination deleted parts of the loci are circulized into TRECs. \item Similar to transposons, the reintegration of TRECs has been implicated in the \alert{deregulation or inactivation of targeted genes}. \end{itemize} \end{column} \end{columns} \footnotetext{ \tiny Curry, John D et al. “Chromosomal reinsertion of broken RSS ends during T cell development.” The Journal of experimental medicine vol. 204,10 (2007): 2293-303. doi:10.1084/jem.20070583 } \end{frame} {\setbeamercolor{background canvas}{bg=bgturq} \begin{frame}[c] \metroset{block=fill} \begin{alertblock}{{\centering \large Hypothesis} } \begin{itemize} \item In T-ALL, we could find with molecular biology tools insertions of those TRECs. \item With the same tools we could also find all the translocations which involves the TCR. \end{itemize} \end{alertblock} \end{frame} } \begin{frame}{\emoji{triangular-ruler} Material \& Method} \begin{itemize} \item<1-> We used our extensed collection of \alert{T-ALL samples at diagnostic n = 1533}. \item<2-> We designed a NGS capture assay with \alert{capture probes} mapped at multiple parts of de TCR \delta { } locus. \item<3-> We developed a specific software to analysed aligned reads and call SV \url{https://github.com/Dr-TSteimle/sv-finder}. \end{itemize} \begin{figure} \centering \includegraphics<2>[width=\textwidth]{Images/Probes_TRD.png} \includegraphics<3>[width=.8\textwidth]{Images/assemblage.png} \end{figure} \end{frame} \begin{frame}{\emoji{bar-chart} Results --- \textit{TRD} translocations --- Validation cohort} \begin{itemize} \item To validate our method, we used a previously published cohort of 264 cases analysed with \alert{\textit{TRD} dual-color FISH probe}$^1$. \item \alert{Se = 98.1\%} [95\% CI 96-99] and \alert{Sp = 97.7\%} \item The 4 FN cases are in fact TRECs insertions inside \textit{ZFP36L2} that couldn't have been seen with FISH ! \end{itemize} \begin{center} \includegraphics[width=.3\textwidth]{Images/confusion.png} \end{center} \vspace{1cm} \footnotetext[1]{ \tiny Le Noir, Sandrine et al. “Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL.” Blood vol. 120,16 (2012): 3298-309. doi:10.1182/blood-2012-04-425488 } \end{frame} \begin{frame}{\emoji{bar-chart} Results --- \textit{TRD} translocations --- Discovery cohort} \begin{figure} \includegraphics[height=.8\textheight]{Images/distribution.png} \end{figure} \end{frame} \begin{frame}{\emoji{dart} Results --- \textit{TRD} translocations --- Discovery cohort} \Wider[4em]{ \setlength\columnsep{1pt} \vspace{0.8cm} \begin{multicols}{3} \includegraphics[width=.35\textwidth]{Images/circos_tlx1.png} \includegraphics[width=.35\textwidth]{Images/circos_lmo2.png} \includegraphics[width=.35\textwidth]{Images/circos_tal1.png} \end{multicols} } \end{frame} \begin{frame}{\emoji{round-pushpin} Results --- \textit{TRD} translocations --- Discovery cohort} We confirmed all TRECs insertions with sanger sequencing and OGM. \begin{figure} \includegraphics[width=\textwidth]{Images/ZFP36L2_lolli.pdf} \includegraphics[width=\textwidth]{Images/sanger.png} \includegraphics[width=.7\textwidth]{Images/bionano_trec.png} \end{figure} \end{frame} {\setbeamercolor{background canvas}{bg=bgturq} \begin{frame}[c] \metroset{block=fill} \vspace{.5cm} \begin{alertblock}{{\centering \large Conclusions} } \begin{itemize} \item We developed a \alert{highly accurate and sensitive method} that enables precise characterization of \textit{TRD} structural variations. This method can be applied at diagnosis without incurring any additional costs. \item Our findings provide confirmation that \alert{recurrent TRECs insertions} are present in cases of T-ALL. \item Using our method, we have observed that these recurrent \alert{TRECs insertions predominantly disrupt the \textit{ZFP36L2} gene}. \item The tumor suppressor \textit{ZFP36L2} is well-established to be involved in V(D)J recombination, but further clarifications are needed regarding its specific role in oncogenesis. Our findings will help in the characterization of this tumor suppressor. \end{itemize} \end{alertblock} \end{frame} } \begin{frame}{\emoji{thinking-face} My PhD --- Epigenetic Rationnal} \begin{itemize} \item<1-> The aforementioned results contribute to the \alert{understanding of the dysregulation of proto-oncogenes} such as \textit{TAL1}, \textit{TLX1} or \textit{TLX3}. \item<2-> Despite extensive investigation, \alert{the molecular mechanisms} underlying the dysregulation of these oncogenes, \alert{remain elusive in many cases}. \item<3-> It has been demonstrated that \alert{tumor cells acquire enhancers}\footnotemark[1] through intergenic sequence mutations that enable binding of transcription factors. \end{itemize} \begin{figure} \centering \includegraphics<3>[width=.75\textwidth]{Images/bradner_cis_small.png} \end{figure} \footnotetext[1]{Bradner JE, et al. Cancer. Cell. 2017 Feb 9;168(4):629-643} \end{frame} \begin{frame}{\emoji{thinking-face} My PhD --- Epigenetic Rationnal} \begin{itemize} \item The presence of upstream \alert{indels in \textit{TAL1} leads to the formation of a neo-enhancer}$^1$. \item It has also been shown that the transcription factor \alert{MYB can bind to this neo-enhancers}$^2$. \end{itemize} \begin{figure} \includegraphics[width=.46\textwidth]{Images/tal_ins.png} \end{figure} \footnotetext[1]{ \tiny Navarro JM et al. Nat Commun. 2015;6:6094} \footnotetext[2]{ \tiny Smith, C et al. “TAL1 activation in T-cell acute lymphoblastic leukemia: a novel oncogenic 3' neo-enhancer.” Haematologica vol. 108,5 1259-1271. 1 May. 2023} \end{frame} {\setbeamercolor{background canvas}{bg=bgturq} \begin{frame}[c] \vspace{.6cm} \metroset{block=fill} \begin{alertblock}{{\centering \large Hypothesis} } \begin{itemize} \item[A]<1-> By taking a pan-genomic approach, it is possible to identify numerous \alert{intergenic alterations correlated with the cis deregulation of adjacent genes} (correlation between transcriptome RNA-seq and ChIP-seq). \item[B]<2-> Some of these genes are expected to be known oncogenes, while others have the potential to be \alert{novel oncogenes} (discovery). \item[C]<3-> It is likely that these specific alterations are the causative factors for the cis deregulation of adjacent genes (functional experiments). \item[D]<4-> Based on these alterations, it is possible to stratify patients into groups with similar \alert{prognoses}. \item[E]<5-> The \alert{characterization of the deregulation mechanisms and the discovered oncogenes} should help identify vulnerabilities that can be targeted by treatment. \item[F]<6-> This treatment may prove to be \alert{more effective with fewer side effects} compared to the currently prescribed polychemotherapy. \end{itemize} \end{alertblock} \end{frame} } \begin{frame}{\emoji{white-check-mark} What's already done} \begin{itemize} \item[\emoji{white-check-mark}] Alignement and copy number analysis of more than 260 RNA-seq \end{itemize} \begin{figure} \includegraphics[width=\textwidth]{Images/fdt_hm.png} \end{figure} \end{frame} \begin{frame}{\emoji{white-check-mark} What's already done} \begin{itemize} \item[\emoji{white-check-mark}]<1-> Alignement and copy number analysis of more than 260 RNA-seq \item[\emoji{white-check-mark}]<1-> Alignement and copy number analysis of 72 ChIP-seq (H3K4me4 and H4K27ac). \item[\emoji{white-check-mark}]<2-> We have developed a high-performance tool that optimizes memory usage and speed for correlating variably expressed genes with depth of ChIP-seq peaks. Specifically, our tool efficiently handles a large dataset consisting of 10,036 gene expressions and 84,839 ChIP-seq positions, resulting in a total of 851,444,204 correlations. \item[\emoji{white-check-mark}]<3-> Calling of genetic alterations sequenced by ChIP-seq. \end{itemize} \end{frame} \begin{frame}{\emoji{dart} First results} With these filters: \begin{itemize} \item Recurrent mutations in the same ChIP-seq peak (> 1 case) with enrichment of the alternative allele (AF > 0.6). \item Cases with the mutations should have correlated genes (Pearson coefficient > 0.7) significantly upregulated (t-test p value < 0.05) \end{itemize} \begin{figure} \includegraphics[width=\textwidth]{Images/hm_1.png} \end{figure} \vspace{.5cm} \begin{figure} \includegraphics[width=\textwidth]{Images/hm_2.png} \end{figure} \end{frame} \begin{frame}{\emoji{knocked-out-face} Caveats} \begin{itemize} \item<1-> Most of intergenic alterations are \alert{SNPs}. \item<2-> Complexe alterations like \alert{indels and SV are difficult to call with ChIP-seq small reads}. \item[$\rightarrow$]<3-> We are implementing \alert{longreads sequencing} with the Oxford Nanopore Promethion for resolving complex genomic regions, detecting structural variations, and studying repetitive elements. \end{itemize} \begin{figure} \includegraphics<3>[width=.4\textwidth]{Images/promethion.png} \end{figure} \end{frame} \begin{frame}{\emoji{flying-saucer} Longreads pipeline} \begin{itemize} \item<1-> We will conduct a \alert{whole-genome sequencing of 150 T-ALL cases along with their corresponding constitutional samples}. \item<2-> Our objective is to implement a pipeline capable of \alert{assembling long reads and generating a diploid reference genome} for each of the cases. \end{itemize} \begin{figure} \includegraphics<2->[width=\textwidth]{Images/lr_pipe.png} \end{figure} \footnotetext[1]{ \tiny Kolmogorov, Mikhail et al. “Assembly of long, error-prone reads using repeat graphs.” Nature biotechnology vol. 37,5 (2019): 540-546. doi:10.1038/s41587-019-0072-8} \end{frame} \begin{frame}{\emoji{flying-saucer} Longreads pipeline} \begin{itemize} \item<1-> We will conduct a \alert{whole-genome sequencing of 150 T-ALL cases along with their corresponding constitutional samples}. \item<1-> Our objective is to implement a pipeline capable of \alert{assembling long reads and generating a diploid reference genome} for each of the cases. \item<1-> The alignment of somatic reads on it and the subsequent calling of somatic variants, especially \alert{structural variations} (SV), will be of significant interest. \item<2-> By aligning our current RNA-seq and ChIP-seq data using this approach, we will be able to \alert{phase gene expression} and identify \alert{allele-enriched epigenetic marks} more efficiently. \item<3-> We will also have access to \alert{phased methylation of CpG islands} with the same technic. \end{itemize} \end{frame} % qrencode https://git.t0m4.fr/Thomas/presentation_projet_inserm/raw/master/presentation.pdf -t SVG | sed 's/"#000000"/"#e3b505"/g' | sed 's/"#ffffff"/"#23373B"/g' | /Applications/Inkscape.app/Contents/MacOS/inkscape -p Images/qr-code.pdf \begin{frame}[standout] \vspace*{1cm} \textcolor[HTML]{e3b505}{Thank you for listening !}\\ \textcolor[HTML]{e3b505}{\textbf{Questions ?}}\\ \vspace*{1cm} \begin{figure} \includegraphics[width=.2\textwidth]{Images/qr-code.pdf} \end{figure} \end{frame} % qrencode https://git.t0m4.fr/Thomas/tagc_trec/raw/master/presentation.pdf -t SVG | sed 's/"#000000"/"#e3b505"/g' | sed 's/"#ffffff"/"#23373B"/g' | /Applications/Inkscape.app/Contents/MacOS/inkscape -p --without-gui --export-pdf=Images/qr-code.pdf \end{document}